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Transition metal compounds with the Kagome structure have
been of great academic interest because of their novel magnetic
properties. Most of the Kagome compounds investigated belong
to the family of jarosites, which are difficult to obtain in pure form.1

Magnetic properties of the jarosites comprising Fe3+ ions generally
show magnetic frustration or long-range antiferromagnetic order
at low temperatures. Nocera et al. have found that pure iron jarosites
prepared by redox-based methods exhibit long-range antiferromag-
netic order at 61.4 K, involving antiferromagnetic stacking of an
out-of-plane moment arising from spin canting.2 These workers have
also shown that a phase pureS) 1/2 copper Kagome layer exhibits
spin frustration.3 Interestingly, in V3+ jarosites, there is ferromag-
netic coupling within the triangles of the Kagome layers.4 The
presence of ferromagnetic interactions has also been reported in
Fe2+ and mixed-valent Fe (2+, 3+) Kagome compounds.5 The
corresponding Co2+ Kagome compound, however, behaves similar
to the Fe3+ jarosites.6 A theoretical study employing many-body
Heisenberg models has enabled us to rationalize the variety of
low-temperature magnetic properties exhibited by Kagome com-
pounds and suggests the crucial role of the magnitude of the spin
of the transition metal ion.7 Thus, integral spins are suggested to
give rise to ferro/ferrimagnetic interactions, while odd-half integer
spins cause frustration. To test such a hypothesis and to prepare a
novel Kagome compound with an entirely different transition metal
ion, we have carried out experiments to prepare and characterize a
Ni2+ (S ) 1) Kagome compound. Interestingly, a phase-pure
compound of the formula [C6N2H8][NH4]2[Ni3F6(SO4)2], I , prepared
by us under solvothermal conditions8 shows novel magnetic
properties. Another unusual feature ofI is that a novel organic
species, diazacubane, formed under the synthetic conditions,
templates the structure.

The asymmetric unit ofI consists of eight non-hydrogen atoms,
out of which five belong to the inorganic framework and three to
the extra framework guest molecules, including the nitrogen of the
ammonium ion (Figure 1a). The structure ofI consists of anionic
layers of vertex-sharing NiIIF4O2 octahedra and SO4 tetrahedra fused
together by Ni-F-Ni and Ni-O-S bonds. Each NiF4O2 unit
shares four of its Ni-F vertices with similar neighbors with the
Ni-F-Ni bonds roughly aligned in theab-plane. The Ni-O bond
is canted from theab-plane, and the Ni-O vertex forces a three-
ring trio of apical Ni-O bonds closer together to allow them to be
capped by the SO4 tetrahedra. The sulfate groups are positioned
alternately up and down about the hexagonal network. The three
and six rings formed by the octahedra give rise to the in-plane
connectivity of the hexagonal tungsten bronze sheets, characteristic
of the Kagome lattice, as shown in Figure 1b.

The Ni-O/F bond distances inI are in the range of 2.018 (2)-
2.050 (3) Å [(Ni-O) ) 2.050 and (Ni-F)av ) 2.019(2) Å]. Bond
valence sum (BVS) calculations9 usingr0 (Ni-F) of 1.596 andr0

(Ni-O) of 1.654 Å gave a valence sum of 1.95 for Ni.

The position of the fluorine is also supported by these calculations
[F(1) ) 0.62)]. The framework stoichiometry of [Ni3F6(SO4)2] with
-4 charge is balanced by the presence of protonated 1,8-diaza-
cubane (see Figure 1a, C-N ) 1.572(10) Å, C-C ) 1.697(12)
Å) and NH4

+ ions in the interlayer space and hexagonal channels,
respectively (Figure 1c). Both of these are formed by the decom-
position of piperazine under the synthetic conditions. Diazacubane
is not a known compound, and its 1,8-isomer has been theoretically
predicted as most stable.10 Both NH4

+ and protonated diazacubane
form hydrogen bonds with the inorganic layers and ensure the
stability of the structure.

In Figure 2, we present the results of magnetic measurements
on I . The high-temperature inverse susceptibility data give a Weiss
temperature of-60 K and an effective magnetic moment per nickel
atom is 3.02µB, which is slightly higher than the spin onlyS) 1
value of 2.83µB. This is to be compared with the magnetic moment

Figure 1. (a) Labeled asymmetric unit ofI . Thermal ellipsoids are given
at 50% probability. (b) Polyhedral view of the hexagonal Kagome layer in
I . Note the presence of ammonium ion in the hexagonal channel. (c)
Structure ofI showing the presence of the 1,8-diazacubane in the interlayer
space.
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of V3+ jarosites, which lie in the range between 3.02 and 3.16µB.4c

Furthermore,I shows magnetic hysteresis at low temperatures (inset
in Figure 2). The susceptibility (ø) data can be considered to have
three different regions corresponding to three different energy scales.
In the high-temperature regime down to 15 K,ø decreases due to
antiferromagnetic superexchange coupling between the spin (S )
1) moments, as given by the Curie-Weiss law. Below 15 K, the
coupling is primarily angle-dependent (canted) antiferromagnetic
(AFM) induced by Dzyaloshinskii-Moriya (DM) interactions. It
may be noted that both the in-plane and the out-of-plane DM vectors
would be nonzero in this system, with the in-plane component
inducing canted spin moments in the out-of-plane directions. At
low temperatures below 10 K,ø decreases due to weak AFM
coupling between the layers, which is field-dependent. The occur-
rence of such diverse interactions of different magnitudes and signs
is due to the interplay between the frustrated Kagome geometry
and the integer spins of the Ni2+ ions.

In conclusion, we have prepared and characterized an organically
templated Ni(II) Kagome compound. Significantly, the Ni2+

compound withS ) 1 shows canted antiferromagnetism. A novel
side observation is the formation of the stable isomer of 1,8-
diazacubane in the inter-sheet space.
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Figure 2. Temperature dependence of the magnetic susceptibility ofI (100
Oe) under field-cooled (FC) and zero-field-cooled (ZFC) conditions. Inset
(a) shows the temperature variation of the inverse susceptibility at 1000
Oe. Inset (b) shows magnetic hysteresis at 5 K.
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